

INTRODUCTION

TO CODING
GRADE VI

Student Handbook

Version 1.0

INTRODUCTION

TO CODING
GRADE VI

Student Handbook

ACKNOWLEDGEMENT

Patrons

• Sh. Ramesh Pokhriyal 'Nishank', Minister of Human Resource Development,

Government of India

• Sh. Dhotre Sanjay Shamrao, Minister of State for Human Resource

Development, Government of India

• Ms. Anita Karwal, IAS, Secretary, Department of School Education and Literacy,

Ministry Human Resource Development, Government of India Advisory

Editorial and Creative Inputs

• Mr. Manuj Ahuja, IAS, Chairperson, Central Board of Secondary Education

Guidance and Support

• Dr. Biswajit Saha, Director (Skill Education & Training), Central Board of

Secondary Education

• Dr. Joseph Emmanuel, Director (Academics), Central Board of Secondary

Education

• Sh. Navtez Bal, Executive Director, Public Sector, Microsoft Corporation India

Pvt. Ltd.

• Sh. Omjiwan Gupta, Director Education, Microsoft Corporation India Pvt. Ltd

• Dr. Vinnie Jauhari, Director Education Advocacy, Microsoft Corporation India

Pvt. Ltd.

• Ms. Navdeep Kaur Kular, Education Program Manager, Allegis Services India

Value adder, Curator and Co-Ordinator

• Sh. Ravinder Pal Singh, Joint Secretary, Department of Skill Education, Central

Board of Secondary Education

ABOUT THE HANDBOOK

Coding is a creative activity that students from any discipline can engage in. It helps to

build computational thinking, develop problem solving skills, improve critical thinking

and exposure to real life situations to solve problems in various realms.

Therefore, CBSE is introducing ‘Coding’ as a skill module of 12 hours duration in classes

VI-VIII from the Session 2021-2022 onwards. The idea is also to simplify the coding

learning experience by nurturing design thinking, logical flow of ideas and apply this

across the disciplines. The foundations laid in the early years will help the students to

build the competencies in the area of AI, data sciences and other disciplines.

CBSE acknowledges the initiative by Microsoft India in developing this coding handbook

for class VI students. This handbook introduces concepts of coding and computational

thinking using real life examples and block coding with open source MakeCode platform.

It uses gamified learning approach to make learning experience more engaging. The

book is intuitive with practical examples of theoretical concepts and applied exercises.

There are mini projects that students can work on. Additionally, the handbook also

focuses on creating exposure to ethics of coding and promotes empathy among students

by activities curated to demonstrate empathy and sensitivity.

The purpose of the book is to enable the future workforce to acquire coding skills early

in their educational phase and build a solid foundation to be industry ready.

RESOURCES FOR STUDENTS

Minecraft education edition

Minecraft education edition is a game-based learning platform that promotes creativity,
collaboration, and problem-solving in an immersive digital environment. This platform
provides a fun way of learning coding and design thinking concepts. Visit

https://education.minecraft.net/ for more details.

MakeCode

Microsoft MakeCode is a free, open source platform for creating engaging computer
science learning experiences that support a progression path into real-world
programming. It brings programming to life for all students with fun projects, immediate
results, and includes both block and text editors for learners at different levels. Visit
https://www.microsoft.com/en-us/makecode for more details.

GitHub

GitHub is a storehouse where you can manage and collaborate on your code. It helps to
maintain different versions of the code easily. GitHub Student Developer Pack gives
students free access to the best developer, web development, gaming and many other
tools at no cost enabling practical learning.
Sign up for the GitHub Student developer pack here

https://education.github.com/discount_requests/student_application?utm_source=2
021-06-11-cbse

https://education.minecraft.net/
https://www.microsoft.com/en-us/makecode
https://education.github.com/discount_requests/student_application?utm_source=2021-06-11-cbse
https://education.github.com/discount_requests/student_application?utm_source=2021-06-11-cbse

I

TABLE OF CONTENTS

Table of Contents ... I

Ethical practices in coding ...1

Introduction to Coding ..2

1.1 What will you learn in this chapter? ...2

1.2 How do traffic lights work?..2

1.3 Where else do we see applications of coding?..2

1.4 What exactly is coding? ..2

1.5 What is a programming language?..3

1.6 Quiz Time ..4

1.7 What did you learn in this chapter? ..5

Algorithms With Block Coding ..6

2.1 What will you learn in this chapter? ...6

2.2 Searching for a word in the dictionary...6

2.3 Flowcharts ...7

2.3.1 What is a Flowchart?..7

2.3.2 Symbols used in a flowchart ..7

2.3.3 Benefits of using a flowchart..8

2.4 Activity: Profit and loss with flowcharts ...8

2.5 Pseudocode ..8

2.5.1 What is a Pseudocode? ...8

2.6 Activity: Profit and loss with pseudocode ...9

2.7 Getting started with block coding ...9

2.8 Quiz time... 13

2.9 What did you learn in this chapter? .. 18

Variables using block coding .. 19

3.1 What will you learn in this chapter? ... 19

3.2 What are variables? ... 19

II

3.3 Naming variables .. 19

3.4 Data types in variables ... 20

3.5 Performing Operations on Variables.. 23

3.6 Activity: Addition operation using block coding 24

3.7 Quiz time... 34

3.8 What did you learn in this chapter? .. 36

Control with conditionals... 37

4.1 What will you learn in this chapter? ... 37

4.2 Arranging blocks ... 37

4.3 And operator .. 37

4.4 OR Operator... 38

4.5 NOT Operator ... 39

4.6 Combining logical operators .. 39

4.7 Quiz time... 40

4.8 Relational operators... 40

4.9 Activity: Are you a teen? ... 40

4.10 Activity: Dynamic backgrounds ... 41

4.11 Nested Conditional Statements ... 46

4.12 Activity: The remainder problem.. 46

4.13 Quiz time .. 50

4.14 What did you learn in this chapter? ... 53

Loops using block coding... 54

5.1 What will you learn in this chapter? ... 54

5.2 Introduction to loops ... 54

5.3 Increment Loops ... 54

5.4 Different types of loops... 55

5.5 Activity: Building a music player .. 58

5.6 Entry Criteria ... 61

5.7 Exit Criteria ... 61

5.8 Break Statement ... 62

5.9 Continue Statement... 63

5.10 Activity: A tale of two villages .. 63

III

5.11 Quiz time .. 68

5.12 What did you learn in this chapter? ... 72

References .. 73

1 | P a g e

ETHICAL PRACTICES IN CODING

As you build capabilities around coding, you will be equipped to build software on your

own, which will have an impact on society in general. So, it is very important to adhere

to ethical practices while building your own code. Below are some practices you must

remember as you keep learning to code.

Contribute to society and human wellbeing

• You must limit negative results of software, including dangers to safety, health,

personal security, and privacy

• Do consider the aftereffects of the software. Ensure your Code respects diversity

and is utilized responsibly with social issues in mind

• In addition to this, promote environmental sustainability both locally and globally

Avoid harm to others

• Your code should not cause physical or mental injury, unjustified destruction to

property or information

• Avoid unjustified damage to reputation and environment

2 | P a g e

INTRODUCTION TO CODING

1.1 What will you learn in this

chapter?

Do you want to know what code is? How

is code applied in real life, and how does

it impact our day-to-day activities?

Welcome to the introductory section on

coding.

Here you will learn:

1.2 How do traffic lights work?

Have you ever wondered

how traffic signals

function? The lights cycle

through green, yellow,

and red at regular

intervals to control road

intersections' traffic flow. They prevent

accidents and help to avoid congestion

on the roads.

However, how do the traffic lights

change automatically?

Few lines of code running in the

background drive the traffic lights. At

regular intervals, the code changes the

traffic signals to show different colors.

Sometimes it is even smarter, where the

code detects congestion based on

sensors and maximizes efficiency by

only functioning when traffic is present.

1.3 Where else do we see

applications of coding?

Most of us knowingly or unknowingly

engage with programming, be it inside

our homes or outside. Coding, in the

modern world, can be seen on the

streets, at the schools, at the local

grocery stores, etc.

Some of the practical examples of coding

in the real world are:

1.4 What exactly is coding?

Coding, also referred to as

programming, is creating instructions

that can be executed on a computer to

• Real world application of coding
• How coding impacts our daily lives

• What exactly is coding in context
of computer science

• Interaction with bar-code
scanners at shopping store

• Automatic control of traffic using
traffic lights

• Booking movie, bus, train, flight
tickets online

• Printers
• Computer software we use like

web browser, Word etc.
• Video games and animations for

entertainment

3 | P a g e

perform a specific task or achieve a

particular result.

Coding is just like solving a math

problem. There may be many ways to

solve a problem. Similarly, there could

be more than one way to write

code for the same task. Just like solving

any other problem, some coding

approaches are more efficient than

others.

Think you are playing a video on your

smartphone. Your phone is like a

computer that needs to be instructed on

what to be done. The app playing the

video provides this instruction. This

video-playing app is an example of

coding. But how does the app

communicate the instructions to the

phone? It does via a programming

language. In the next section, we will get

to know more about programming

languages.

1.5 What is a programming

language?

Think about how we communicate with

people around us? Language is our

primary means of communication for all

human interactions. Similarly, we can

interact with computers via a language

that computers understand. This

language is called a programming

language. Using programming

languages, we can provide instructions

to a computer to perform a set of

activities. These sets of instructions are

also called programs. Like any other

language that has grammar,

programming languages have syntax.

Syntax is a set of rules that we need to

follow when we write a computer

program.

There are hundreds of programming

languages used around the world. And

new ones are getting developed all the

time. Every programming language has

its own syntax. But all programming

languages have one common thing: they

are eventually converted into a language

that the computer will understand.

Some of the most frequently used

ones are:

• Python
• Java
• JavaScript
• C#

• R
• C++
• C
• F#
• COBOL

4 | P a g e

Throughout this chapter, we will learn

about different programming techniques

and how to apply them. Now, that we

know a little bit about coding and its

applications, let us try to do some

exercises.

1.6 Quiz Time

Question 1 For a given problem, there is always only one way to write a program

Option 1 True

Option 2 False

Question 2 Pin authentication for ATM card transaction is an example of

programming

Option 1 True

Option 2 False

Question 3 Code is a set of instructions that can be executed on a computer to
perform a specific task

Option 1 True

Option 2 False

Question 4 Which among the below are examples of programming in real life?

Option 1 Robots

Option 2 Computer Games

Option 3 Self-drive cars

Option 4 All the above

Question 5 Which among the below is not an example of programming language?

Option 1 Python

Option 2 English

Option 3 JavaScript

5 | P a g e

1.7 What did you learn in this chapter?

So, we are at the end of the introductory chapter for coding. By now, you should

understand

• How coding is being utilized in everyday life to perform complex tasks in an easy
manner

• What are the real-life applications of coding?

• What is exactly meant by the term coding in context of computer science?
• Now you know names of some of the most popular programming languages

6 | P a g e

 ALGORITHMS WITH BLOCK CODING

2.1 What will you learn in this

chapter?

Now that we already have a fair

understanding of coding applications in

real life, let us understand how to solve

a coding problem in detail. By the end of

this chapter, you will learn:

2.2 Searching for a word in the

dictionary

While reading a book in a school library,

Mukesh comes across a word say 'proxy'

whose meaning he does not know. So

how does he find out the meaning of this

word?

The simple answer to this is that

Mukesh searches for the meaning of the

word 'proxy' in a dictionary. However,

there are many words in a dictionary. So

how does he find that word 'proxy' in the

dictionary?

To achieve this, he first needs to find the

dictionary section with the first letter of

the word, which in this case is 'p.' Then,

within the list of words starting the first

letter 'p', he needs to find the section

having the second letter of the word 'r'.

He needs to do this operation again with

the third, fourth & fifth letters until he

finally reaches the word 'proxy' in the

dictionary & then finds its meaning.

In other words, Mukesh needs to follow

a set of steps to complete the task of

finding the meaning of a word.

Similarly, before writing a program code

for a given problem in computer science,

• What does the term algorithm
mean?

• What is a flowchart?
• Applications of flowchart
• Get introduced to pseudocode

7 | P a g e

it is essential to devise a set of steps to

be followed to solve the problem

successfully. This set of steps is called

an algorithm.

Thus, in computer science, an algorithm

is defined as the step-by-step plan to

solve the problem for a given problem

statement.

2.3 Flowcharts

2.3.1 What is a Flowchart?

A flowchart is a diagrammatic

representation of the step-by-step plan

to be followed for solving a task/problem

statement.

This diagrammatic representation is

made up of shapes like boxes,

diamonds, parallelograms, circles,

ellipses connected by arrows. Each

shape acts as a step in the solution, and

the arrows represent the direction of

flow among the steps.

2.3.2 Symbols used in a flowchart

8 | P a g e

2.3.3 Benefits of using a flowchart

Some of the benefits of using a flowchart

are:

1. It helps to explain your approach

towards solving a problem

2. The flowchart helps in bringing in

visual clarity to a problem, so it

helps in practical problem solving

3. Once you build a flowchart, this

remains as documentation of the

code you are about to build. If you

need to come back and

understand the code, you can

refer to the flowchart.

2.4 Activity: Profit and loss

with flowcharts

Shown in the image is a flowchart that

takes two inputs, namely cost price and

selling price. It then calculates profit or

loss depending on the values and prints

the same.

2.5 Pseudocode

2.5.1 What is a Pseudocode?

In computer science, pseudocode is

used to describe the steps followed in an

algorithm via simple human-

comprehensible language. Thus, it has

no syntax of any programming language

and can be understood by a layman. The

advantages of representing the solution

as pseudocode are multifold:

• The focus is mainly on including all

the essential steps to solve the

problem. Thus, the solution tends to

be comprehensive

• Reviewers can quickly review the

pseudocode & verify if the steps will

generate the desired outcome

• While writing pseudocode, you can

focus on all possible scenarios. So,

this helps you understand the

potential problems that might come

up later

• Since you are not worried about

coding syntax, you can concentrate

on the actual problem

• Writing pseudocode will help writing

your code much easier

• Works as documentation of the code.

So even a layman with no coding

knowledge can refer to the

pseudocode

9 | P a g e

2.6 Activity: Profit and loss

with pseudocode

Now that we have a fair understanding

of flowcharts and pseudocode, let us try

to implement the same profit and loss

problem using pseudocode.

2.7 Getting started with block

coding

Microsoft MakeCode is a framework for

creating interactive and engaging

programming experiences for those new

to the world of programming.

The main objective of MakeCode is to

bring programming to the forefront in a

way that is more alluring and friendly.

To achieve this, MakeCode utilizes the

blocks programming model to let those

who are new to the world of

programming and learn coding concepts

easily.

MakeCode Arcade is one of the platforms

to perform block-based programming.

Using arcade, solution to a problem

statement can be implemented using

various categories of blocks and the

results can be seen side by side on the

same screen.

The different categories of blocks will be

explored in the upcoming chapters.

Note: Minecraft is just one of the

platforms for block coding. You can use

many similar platforms available online

for block coding like – Scratch

(https://scratch.mit.edu/), Code.org

(https://code.org/) etc.

We will now start a simple block coding

exercise on Minecraft platform.

Open the URL

https://arcade.makecode.com in your

favorite web browser.

Program starts

Read Cost Price (CP)

Read Selling Price (SP)

If (SP > CP) then

 Profit = SP – CP

 Print Profit

Else

 Loss = CP – SP

 Print Loss

Program ends

https://scratch.mit.edu/
https://code.org/

10 | P a g e

11 | P a g e

12 | P a g e

13 | P a g e

Congratulations, you have created your first block code program! Now let us do a quiz.

2.8 Quiz time

Objective type questions

1. Select a word from column A and place it in a cell on column B such that its

definition matches in cells of column C

A B C

Algorithm

 Writing steps involved to

solve a problem in a

human-understandable

language

Flowchart

Block based coding

platform

Pseudo Code

 Define step by step plan

to solve a problem

statement

Arcade

Solution to a problem

presented as a diagram

Below is a flowchart to calculate profit and loss. Answer questions 2 to 4 based on the

flowchart.

14 | P a g e

Question 2 Jyoti owns a toy shop. She bought a toy for Rs 325 and sold it for Rs.

375. Which one from the below is correct?
Option 1 She made a loss of Rs. 50

Option 2 She made a profit of Rs. 50

Question 3 Raju buys a pen for Rs 15, and after some time, he sells it for Rs 10.
Which one from the below is correct?

Option 1 He made a loss of Rs. 5

Option 2 He made a profit of Rs. 5

Question 4 Ram buys a table for Rs 500, he sells it for Rs 550. Which one from

the below is correct?
Option 1 He made a loss of Rs. 50

Option 2 He made a profit of Rs. 50

15 | P a g e

Question 5 Which of the following is not an advantage of a flowchart?

Option 1 Efficient coding

Option 2 Systematic testing

Option 3 Improper documentation

Option 4 Better communication

Question 6 The following box denotes.

Option 1 Initialization

Option 2 Decision

Option 3 Input / Output

Option 4 Connectors

Question 7 What is a flowchart?

Option 1 A specific programming language

Option 2 A text-based way of designing an algorithm

Option 3 A bullet point list of instructions

Option 4 A diagram that represents a set of instructions

Question 8 What shape represents the start and end of a flowchart?

Option 1 Square

Option 2 Diamond

Option 3 Oval

Option 4 Circle

Short Answer questions

1. What is a pseudocode?

2. What are the benefits of using flowcharts?

3. What is a flowchart?

16 | P a g e

Higher Order Thinking Skills (HOTS)

1. Below is a flowchart on how to calculate if a number is even or odd. Write the

corresponding pseudocode for the problem.

 Note: Modulus operator (%) is used to find the remainder of two number.

2. The below pseudocode prints "Above average marks" if the average marks in three

subjects are greater than 75. If average marks are less than or equal to 75, then

it prints "Below average marks". Draw the corresponding flowchart for the

problem.

17 | P a g e

Applied Project

Create a flowchart based on your normal school day. Here are some guidelines:

Getting ready for school

• Look at your timetable and pack your school bag

• If PE is there packing your PE uniform and shoes

At school

• Attend the morning session with subjects Math, English and science

• A decision on what to play during recess

After reaching home

• Have snacks

• Depending on the day, choose the class you have to attend.

• Monday-Karate, Tuesday-Math Class, Wednesday and Thursday Free day,

Friday-Karate

Program starts

Read marks for subject SubA

Read marks for subject SubB

Read marks for subject SubC

Calculate AverageMarks = (SubA + SubB + SubC)/3

Print AverageMarks

If (AverageMarks > 75)

Print (“Above Average Marks”)

Else

Print (“Below Average Marks”)

Program ends

18 | P a g e

2.9 What did you learn in this chapter?

• By now you should have a basic understanding about algorithms, flowchart
& pseudocode

• You have also practiced following a step by step approach to solve a problem

using block-based programming
• You got oriented to MakeCode platform which we will use throughout the

course

19 | P a g e

 VARIABLES USING BLOCK CODING

3.1 What will you learn in this

chapter?

3.2 What are variables?

In programming, variable is a packet in

which we can store data. These packets

can be named and referenced and can be

used to perform various operations. To

perform a mathematical operation, you

can declare two variables and perform

the operation on them.

Scope of a variable refers to the part of

the code where the variable can be used.

The scope or accessibility of the

variables defined in a program depends

on where you have declared it in each

program. Any defined variable cannot be

accessed beyond its scope.

3.3 Naming variables

As we have understood till now,

variables are basically like nouns in a

programming language. Every variable

in a program is unique. To identify these

variables uniquely, user needs to

allocate them a unique name. This name

acts as an identifier for that variable. In

programming, a user is not allowed to

use the same name of a variable more

than once.

Naming variables make it to easier to call

them while performing operations. The

name of a variable also suggests what

information the variable contains.

You can refer to the example before for

better understanding about variables:

If variable named as "a" is equal to 2 and

variable named as "b" is equal to 2,

• What are variables?
• How to name variables?
• Commonly used data types
• Performing operations on variables

20 | P a g e

performing add operation on "a" and "b"

is going to result into an output as "4".

3.4 Data types in variables

Variables are the values that are acted

upon. Every value needs to be assigned

to a specific data type to make the

variable more readable by a computer.

Data type identifies what the type of data

that the declared variable can hold is.

Thus, it indirectly helps the computer to

understand what operations need to be

performed on those variables. The

declaration of a variable in a program

contains two components – the name of

the variable and its type.

Let us now understand what are the

common data types that we can use in

programming:

• Integer

• Floating-point number

• Character

• String

• Boolean

Integer Data Type

Integer data type variables store integer

values only. They store whole numbers

which have zero, positive and negative

values but not decimal values. Multiple

programming languages support

different syntax to declare an Integer

variable. If a user tries to create an

integer variable and assign it a non-

integer value, the program returns an

error.

Variables of the integer data type are

only capable of holding single values.

These variables are not capable of

holding a long list of values.

Floating Point Number Data Type

Floating-point numbers are used to

store decimal values. They hold real

numbers with decimal values.

Depending on the programming

language, the syntax to declare floating-

point variable changes.

There is another type of floating-point

number known as a "double" data type,

which is used to store even bigger

values.

Character Data Type

Character type variables are used to

store character values. Syntax of

declaring a character variable is specific

to the programming language that you

Example of declaring an Integer

variable:

 int a = 2;

Example of declaring a floating-point

number variable:

 float a = 1.1;

Example of a double value:

double a = 8.999999999 *

7.66666666666;

21 | P a g e

are using. If a user tries to create a

character variable and assign it with a

non-character value, the program will

throw an error. The character data type

is the smallest data type in

programming.

Any character values can be declared as

a char variable.

String Data Type

To extend the character data type, a user

may have a requirement to store and

perform an operation on a sequence of

characters. In such cases, the String

data type is present to fit the gap. The

String data type stores value in a

sequence of characters i.e. in String

format.

Any string value can be declared as a

string variable.

Boolean Data Type

There is a subtype of Integer Data Type

called "Boolean Data Type", which stores

values in Boolean type only i.e. "true" or

"false". Users can choose between the

data types for variables as per program

needs and assign variables an

appropriate data type.

Boolean is a subtype of integer data

type. It stores true and false where true

means non-zero and false means zero.

Any Boolean variable holding Boolean

value can be declared as Boolean.

Note: In some programming languages

like python, there is no command to

declare variables. A variable is created

the moment you first assign a value to it.

If you want to specify the data type of

variable this can be done using casting.

Example: y = str(7)

 z = int(7)

 a = float(7)

y will be saved as ‘7’

z will be saved as 7

a will be saved as 7.0

Example of declaring a String

variable:

String a = “I am a String Variable”;

Example of declaring a Boolean

variable:

 bool a = true;

Example of declaring a character

variable:

 char a = ‘w’;

Example of declaring variables in

python

a = 5

b = “Hello”

22 | P a g e

Let us now apply different data types in

a pseudocode. We will first declare

different types of variables, followed by

assigning them to appropriate values.

Finally, we will use the variables by

outputting their values.

The output from the above pseudocode

will be like below.

Note: The syntax is different for different

data types in other programming

languages.

Function Main

Declare

--

 Declare Integer i

 Declare Float f

 Declare Char c

 Declare String s

 Declare Boolean b

Assign

 Assign i = 1234567890

 Assign f = 1.234

 Assign c = ‘c’

 Assign s = "string"

 Assign b = true

Use

--

 Output "Integer i = " & i

 Output "Float f = " & f

 Output "Char c = " & c

 Output "String s = " & s

 Output "Boolean b = " & b

End

Integer i = 1234567890

Float f = 1.234

Char c = c

String s = string

Boolean b = true

23 | P a g e

In python string variables can be

declared either by single quotes or

double quotes or triple quotes.

Below are some rules for naming a

variable in python:

• A variable name cannot start with

a number, it must start with an

alphabet or the underscore (_)

sign

• Variable name is case sensitive.

Sum and sum are different

variables

• A variable can only contain alpha

numeric characters and

underscore

3.5 Performing Operations on

Variables

After declaring the data types in

programming, now let us move ahead

and understand what operations we can

perform on the data types and how do

we perform these operations:

Arithmetic Operations

An arithmetic operation combines two or

more numeric expressions using the

Arithmetic Operators to form a resulting

numeric expression. The basic operators

for performing arithmetic are the same

in many computer languages:

• Addition

• Subtraction

• Multiplication

• Division

• Modulus (Remainder)

Assignment operators

Assignment operators are used to assign

values to variables

Different assignment operators are

shown below:

• “=”: This operator is used to

assign the value on the right to

the left variable.

Example: a=50

• “+=”: This operator assigns the

result to the variable on the left

after adding the current value of

the variable on left to the value on

the right.

Example: x += y

It can also be written as x = x + y

• “-=”: This operator assigns the

result to the variable on the left

after subtracting the value of the

variable on right from the current

value on the left.

Example: x -= y

It can also be written as x = x - y

• “*=”: This operator assigns the

result to the variable on the left

after multiplying the current

value of the variable on left to the

value on the right.

Example: x *= y

It can also be written as x = x * y

• “/=”: This operator assigns the

result to the variable on the left

24 | P a g e

after dividing the current value

of the variable on left from the

value on the right.

Example: x /= y

It can also be written as x = x / y

Increment operator

Increment operator adds one to the

value.

Example: A=8

B=A++

The output of B will be 9 (A+1)

A++ has the same meaning as A=A+1

Decrement operator

Decrement operator subtracts one from

the value.

Example: A=8

B=A--

The output of B will be 7 (A-1)

A-- has the same meaning as A=A-1

3.6 Activity: Addition

operation using block

coding

An addition arithmetic operation is used

to add the values stored in two variables.

Like the way we add values in

mathematics, we can store values in

different variables and perform an

additional operation. The addition of

these variables is displayed as an output

of the program.

For example, performing add operation

on a variable "a" holding value "3" and a

variable "b" holding value "4" will result

in an output "7". To understand this

arithmetic operation better, let us

understand how to implement it

practically in programming. For this, we

are going to take example of platform

https://arcade.makecode.com/. Let us

refer to the steps below understand

more in details.

25 | P a g e

26 | P a g e

27 | P a g e

28 | P a g e

29 | P a g e

30 | P a g e

31 | P a g e

32 | P a g e

33 | P a g e

Subtraction

Subtraction arithmetic operation is used

to subtract the values stored in one

variable from another variable. Like the

way we subtract values in mathematics,

we can store values in different variables

and perform subtraction operations.

Subtraction of these variables is

displayed as an output of the program.

For example, performing subtraction

operation on a variable "a" holding value

"10" and a variable "b" holding value "8"

will result in an output "2".

Multiplication

Multiplication arithmetic operation is

used to multiply the values stored in two

variables. Like the way we multiply

values in mathematics, we can store

values in different variables and perform

multiplication operations. Multiplication

of these variables is displayed as an

output of the program.

For example, performing multiply

operation on a variable "a" holding value

"2" and a variable "b" holding value "2"

will result in an output "4"

Division

Division arithmetic operation is used to

divide the value stored in one variable by

the value stored in another variable. Like

the way we divide values in

mathematics, we can store values in

different variables and perform division

operations. Division of these variables is

displayed as an output of the program.

For example, performing division

operation on a variable "a" holding value

"2" and a variable "b" holding value "2"

will result in an output "1".

Modulus (Remainder)

Modulus operator (%) calculates the

remainder when two variables are

divided. Please note that this operation

can only be performed on integer and

float variables in Python.

For example, performing modulus

operation on a variable "a" holding value

"9" and variable "b" holding value "3" will

result in an output "0" as there is no

remainder in this operation.

34 | P a g e

3.7 Quiz time

Objective Type Questions

Question 1 An integer data type can hold decimal values.

Option 1 True
Option 2 False

Question 2 Variables must be defined with a name and a data type before they
can be used

Option 1 True

Option 2 False

Question 3 Which of the following is not a valid variable name in python?

Option 1 _test

Option 2 11test

Option 3 Test13

Option 4 Test_2

Question 4 Fill in the blanks to declare sum equal to a + b (int _ = a __b)

Option 1 Sum,+

Option 2 Var,-

Option 3 Bool,+

Option 4 Add,+

Question 5 Which of the following data type is used to store decimal values?

Option 1 Integer

Option 2 Float

Option 3 Boolean

Option 4 String

Question 6 How many times should a data type be mentioned for a variable

Option 1 Everywhere the variable is used

35 | P a g e

Option 2 When entering variable’s value

Option 3 When printing a variable’s value

Option 4 Only once; When declaring the variable

Question 7 Which of the following symbol is used to multiply variables?

Option 1 *

Option 2 +

Option 3 x

Option 4 %

Question 8 What is the alternative of y=y+9

Option 1 y=x+9

Option 2 y+=9

Option 3 y-=9

Option 4 x=+9

Question 9 Y++ has the same meaning as

Option 1 Y=Y+1

Option 2 X=+2

Option 3 y-=6

Option 4 X=x-5

Question 10 Which of the following symbol is used to find the remainder?

Option 1 *

Option 2 +

Option 3 x

Option 4 %

Short Answer Questions

1. Define variables in programming

2. Can we declare two variables in a program with the same name?

3. What are the common Data Types in programming?

4. Name a data type that can store exponential values

5. Write the pseudocode to perform an addition operation on two variables in a

program

36 | P a g e

Higher Order Thinking Skills (HOTS)

1. Create a flowchart to perform different mathematical operation (Multiplication,

Subtraction, Addition, Division) on two or more variables.

2. Create a project in https://arcade.makecode.com/ to perform Modulus operation

on two variables in a program.

Applied Project

Using block coding, create your normal school day (Monday to Friday).

Here are some guidelines:

Getting ready for school

• Look at your timetable and pack your school bag

• If PE is there packing your PE uniform and shoes

At school

• Attend the morning session with subjects Math, English and science

• A decision on what to play during recess

• Attend the afternoon session subjects

• Lunch Break

• PE Class

After reaching home

• Have snacks

• Depending on the day choose the class you must attend.

Monday-Karate, Tuesday-Math Class, Wednesday-Swimming and Thursday-

Chess, Friday-Dance (You can use variables to define the class you have to

attend)

3.8 What did you learn in this chapter?

• What are variables and how they are used in programming
• Ways of naming variables.
• Different data types in programming and its usage
• Various operations that we can perform of different data types in programming

37 | P a g e

CONTROL WITH CONDITIONALS

4.1 What will you learn in this

chapter?

4.2 Arranging blocks

In the image below, we see several blocks

arranged in a specific order. Every time

we place a new block, we apply logic to

build a diagonal line with blocks marked

with arrows. This logic in coding terms

are called conditions.

Similarly, every day we take many

decisions depending on our situation.

For instance, when it is cold outside, we

wear warm clothes, otherwise, we don't.

Logical operators are fundamental

blocks that can be used to build a

decision-making capability in your code.

In the earlier chapters, we discussed

how to handle decisions in a flow chart.

Now we shall see how to implement it in

our code.

We can do things conditionally in our

programs using if statements or if/else

statements combined with logical

operators. Logical operators work like

Boolean variables and return either

TRUE or FALSE.

The three most important logical

operators are AND, OR and NOT.

4.3 And operator

• What are conditions and how to
apply them in real life?

• What are the different types of
operators?

• How to combine multiple
operators?

• Apply logical operations in block
coding

Logical
operators

AND OR NOT

38 | P a g e

AND operator is used to determine if two

or more conditions are true. If all the

conditions are true, the AND operator

returns TRUE. If any one of the

conditions fail, the AND operator returns

FALSE. In some programming languages

AND operator is denoted by “&&”

symbol.

For example - you should go to bed only

after you have completed your

homework and the time is past 8 PM.

Here, if we want to derive the logical

operation from this scenario, we have

the following conditions:

Condition 1: Have you completed

homework?

Condition 2: Is the time past 8 PM?

And the decision we are deriving is:

Decision: Should you go to bed?

Based on this we can write the below

pseudo code:

Let us now try to see the different

combinations possible with the above

pseudo code.

Condition 1 Condition 2 Decision
Have you

completed
homework?

Is the time

past 8 PM?

Should

you go to
bed?

Yes Yes Yes
No Yes No

Yes No No
No No No

Having this example in mind, let us now

see how this is different from OR

operator.

4.4 OR Operator

The OR operator is used to determine if

either one of two or more conditions is

TRUE. If any of the condition is true, the

OR operator returns TRUE. If all the

conditions fail, the OR operator simply

returns FALSE. In some programming

languages OR operator is denoted by

“||” symbol.

For example - We should carry an

umbrella when either it is sunny, or it is

raining. Otherwise, we should not carry

it. Like the previous example, if we want

to derive the logical operation from this

scenario, we have the following

conditions:

Condition 1: Is it sunny outside?

Condition 2: Is it raining outside?

And the decision we are deriving is:

Decision: Should we carry an umbrella?

The pseudocode for this will look like

below:

IF (Homework completed) AND (Time is past
8 PM)
THEN
 Go to bed
ELSE
 Do not go to bed
END

IF (It is sunny outside) OR (It is raining
outside)
THEN
 Carry an umbrella
ELSE
 Do not carry an umbrella
END

39 | P a g e

Shown below are the different possible

combinations for the above example.

Condition 1 Condition 2 Decision

Is sunny? Is raining? Carry
umbrella?

Yes Yes Yes

Yes No Yes

No Yes Yes
No No No

Let us now look at the NOT operator.

4.5 NOT Operator

We use the NOT operator to reverse or

negate a condition. If the condition is

true, NOT will return false and vice-

versa. In some programming languages

NOT operator is denoted by “!” symbol.

For example, you can go to play only if it

is not raining, otherwise, you must stay

indoors.

Unlike the previous examples, here we

have only one condition.

Condition: Is it raining?

Decision: Go out to play?

The pseudocode for this will look like

below:

And the corresponding table for this is

below.

4.6 Combining logical

operators

Sometimes, we need to combine different

logical operators to create a complex

expression. Imagine your library is open

on Monday between 10 AM to 12 PM OR

on Wednesday between 3 PM to 5 PM.

Let's see how this looks on a flowchart.

Let us write a pseudocode for this.

The corresponding flowchart for the

pseudocode will be like below.

Is it raining? Go out to play?

Yes No
No Yes

IF NOT (It is raining)
THEN
 Go out to play
ELSE
 Stay indoors
END

IF (Day == Monday AND (Time >= 10 AM
AND Time <=12 PM)) OR
 (Day == Wednesday AND (Time >= 3
PM AND Time <= 5 PM))
THEN
 Library Open
ELSE
 Library Closed
END

40 | P a g e

4.7 Quiz time

Let us now answer some questions

based on the above example.

Question 1

Situation Today is Tuesday, and
the time is 4 PM. Is the
library open now?

Option 1 Yes
Option 2 No

Question 2

Situation Today is Monday and the
time being 10.30 AM. Is
the library open now?

Option 1 Yes
Option 2 No

Question 3

Situation Today is Friday, and the
time is 12 PM. Is the
library open now?

Option 1 Yes

Option 2 No

Question 4

Situation Today is Wednesday, and
the time is 10.30 AM. Is

the library open now?
Option 1 Yes

Option 2 No

Question 5

Situation Today is Wednesday and
the time is 3.30 PM. Is the
library open now?

Option 1 Yes
Option 2 No

4.8 Relational operators

In our previous example, we got

introduced to some relational operators

like greater than equals (>=), equals (==),

and less than equals (<=).

Let us now look at the full list of

relational operators.

Operator Symbol Example Meaning

Greater
than

> x > y x greater
than y

Equal to == x == y x is equal to y

Less than < x < y x is less than
y

Greater

than or
equal to

>= x >= y x is either

greater than
or equal to y

Less than
or equal to

<= x <= y x is either
less than or

equal to y
Not equal

to

!= x! = y x is not equal

to y

4.9 Activity: Are you a teen?

In this activity we will check if you are a

child, teenager or an adult.

Steps to create the flowchart:

41 | P a g e

• Input your age

• If age<13 then child, else,

If age>=13 and <=19 then

teenager, else,

If age>19 then adult

• Print “child or teenager or adult”

depending on the condition

satisfied

4.10 Activity: Dynamic

backgrounds

Let us now do an activity to test our

understanding of conditions and

operators.

You should try this exercise on the

MakeCode platform.

To access the MakeCode editor, open

your favorite browser and go to

https://arcade.makecode.com/. Create

a new project as shown below.

42 | P a g e

 Follow the following steps to complete the exercise.

43 | P a g e

44 | P a g e

45 | P a g e

46 | P a g e

When you change the height to 10, the loop will go inside the if condition as the height

is greater than 5 AND less than 20. The background color will change to green.

So, what did we learn from this

activity?

You have now learnt how to create

conditional statements. What do you

think will the output of the code be if you

change the height to 15?

That is correct! The background color

change to green as height is greater than

5 AND less than 20.

4.11 Nested Conditional

Statements

Under certain circumstances, we might

have to deal with complex scenarios

where using a single if-else loop might

not be enough.

Suppose we want to check if a number

is divisible by 2 or 3 or both 2 and 3.

In this case, we first need an IF condition

to check if the number is divisible by 2.

Within that condition, we can implement

another IF condition to check if the

number is divisible by 3 or not. By doing

so, we can check the divisibility of the

number.

4.12 Activity: The remainder

problem

Let us now run through a practice

exercise to understand the problem

47 | P a g e

stated above. You should try this

exercise on the MakeCode platform.

First, create a new project for this

exercise using the steps shown at the

beginning of exercise 3.1.6 and name

the project 'Nested Conditional

Statements'

Follow the below steps to complete the

exercise.

48 | P a g e

49 | P a g e

50 | P a g e

Result

You can now change the value of the

number to 6 and check if the

background of the controller changes.

The background should change to red

for numbers that are divisible both by 2

and 3. It should change to orange for

numbers that are divisible by 2 but not

by 3.

4.13 Quiz time

Objective Type Questions

Using the below pseudocode answer the following questions (Question 1-4):

IF (Day == Saturday OR Day == Sunday
 IF (Time >= 12 AM AND Time <=8 PM))
 THEN
 Holiday
 ELSE
 School Day
ELSE
 School Day
END

51 | P a g e

Question 1 Today is Monday and the time being 11.30 AM. Is today a school day?

Option 1 True

Option 2 False

Question 2 Today is Saturday and the time being 1.30 AM. Is today a Holiday?

Option 1 True

Option 2 False

Question 3 Today is Wednesday and the time is 5.30 AM. Is today a school day?

Option 1 True

Option 2 False

Question 4 Today is Sunday and the time being 09.30 PM. Is today a Holiday?

Option 1 True

Option 2 False

Question 5 Logical operators can be used to make decisions in our code

Option 1 True

Option 2 False

Question 6 Which operator is used if the statement evaluates true only if both
the expressions are true

Option 1 And

Option 2 Or

Option 3 Not

Option 4 None of the above

Question 7 Which operator is used if the statement evaluates true only if only

one of the expressions is true

Option 1 And

Option 2 Or

Option 3 Not

Option 4 None of the above

52 | P a g e

Question 8 Which of the following operator is used to reverse or negate a
condition

Option 1 And

Option 2 Or

Option 3 Not

Option 4 None of the above

Based on the flowchart Are you a teen, let us now try to answer the below questions.

Question 9 Your father’s age is 35. In which category will he fall?

Option 1 Child

Option 2 Teenager

Option 3 Adult

Option 4 None of the above

Question 10 Your sister’s age is 19. In which category will she fall?

Option 1 Child

Option 2 Teenager

Option 3 Adult

Option 4 None of the above

Short Answer Questions

1. What are the different types of logical operators? Explain with examples.

2. Explain with example on how to combine different logical operators.

3. Write the pseudocode using logical operators to decide if today is a school day or

not.

Monday-Friday: School day;

Sunday: Holiday;

1st and 3rd Saturday: Holiday;

2nd and 4th Saturday: School day)

53 | P a g e

Higher Order Thinking Skills (HOTS)

1. Create an if-else block with a NOT condition and set two different background

colors on the controller.

2. Create an if-else block with an OR condition and set two different background

images on the controller.

3. Create a nested if-else block to check if a number is divisible by 3 or 5 or both.

4. Create a nested if-else block using NOT to check if a number is a power of 2 or 3

or both.

Applied Project

Create a program using conditional statements for a sports event. If an event occurs,

THEN what happens?

Here are some guidelines:

• If a referee blows the whistle

• If the time limit is reached

• If a player crosses the finish line first

• If a player touches a friend during tag

• If a ball goes outside the boundary

4.14 What did you learn in this chapter?

• You should now have an understanding on the AND, OR, NOT logical operators.
• You can now combine different logical operators.

• You have understood how to apply logical operators in block coding.
• Understand nested conditional statement in block coding.

54 | P a g e

LOOPS USING BLOCK CODING

5.1What will you learn in this

chapter?

5.2 Introduction to loops

There are many tasks in our day to day

life which we repeat at specific intervals,

like eating meals, taking a bath, going to

school etc. There is a very similar

concept to this in programming where

we need to repeat certain lines of code at

specific interval or till specified condition

is met.

In programming, repetition of a line or a

block of code is also known as iteration.

A loop is an algorithm which executes a

block of code multiple times till the time

a specified condition is met. Therefore,

we can say that a loop iterates a block of

code multiple times till the time

mentioned condition is satisfied.

For example, consider that you want to

print alphabets a to c on the screen. We

can do so by printing the values a, b and

c by writing 3 lines of code. Let us now

look at the following pseudocode:

This was easy. Now consider a

requirement where you we need to print

numbers in incremental order from 1 to

1000. Although it is possible to print it

following the above pseudocode, it will

get a very tedious and lengthy process.

This is where loops come into the picture

to make this task easier. You can use the

concept of loops and get the desired

output by writing just a few lines of code.

5.3 Increment Loops

Loops provide the facility to execute a

block of code repetitively, based on a

condition. This block of code is executed

repeatedly till the time a specified

condition remains true. This condition is

checked based on loop's control

variable. Whenever this condition

results in false, the loop terminates. It is

very important to keep this thing in

• What are loops?
• How to increment loops?

• Different type sf loops
• Concept of nested loops

Start

…This program demonstrates printing
alphabets a to c

 Print a

 Print b

 Print c

End

Output:

A

B

C

55 | P a g e

mind while programming that the

condition should result false at a certain

point in time. Otherwise, this block of

code will enter an infinite loop.

Execution of loops is based on

iterations. To run a block of code in a

loop, one needs to set a condition and

set its number of iterations. Each time

the condition is true, and the block of

code executes once, it is counted to be

one iteration. Before moving to the next

iteration, one needs to increase the

count of iteration to two. This is called

as incrementing a loop.

For example, if you need to print

numbers 0 to 4, you will execute a block

of code with Print statement in five

iterations. With each passing iteration,

you will increment the count by one.

Below are the two important benefits of

loops:

1. Reduces lines of code

2. Code becomes easier to

understand

Let us understand loops with a

flowchart. The following flowchart prints

the numbers 1 to 5. Here every time the

condition (Count < 5) is true, "Print

count" gets executed. So, we do not have

to write the "Print" statement multiple

times. The loop takes care of that. What

is important to note is every loop must

have an exit condition. In our example

the exit condition is (Count < 5). The loop

will exit when the condition becomes

false. Also, most loops will have a

variable which in programming terms is

called counter variable. The counter

variable keeps track of how many times

the loop executed. In this example, the

“count” variable is our counter.

Often, counter variables are

incremented within the loop.

5.4 Different types of loops
Loops make our code more manageable

and organized. Let us now see what the

different types of loops are:

1. While Loop

2. For Loop

3. Nested Loop

56 | P a g e

The While Loop

The While loop can execute a set of

commands till the condition is true

While Loops are also called conditional

loops.

Once the condition is met then the loop

is finished. Let’s now see a few examples:

Example 1 – Print number from 1 to 15

Here, if we want to derive the loop from
this scenario, we have the following
conditions:

Condition: Write from 1 to 15

And the decision we are deriving is:

Decision: Have we reached 15

Based on this we can write the below

pseudocode:

Example 2 - Print a statement 3 times

using while loop.

Condition: Till the time the test
expression remains true we will run the
body of while loop

And the decision we are deriving is:

Decision: Have we printed the

statement 3 times

Based on this we can write the below

pseudocode:

This is the result for the code

Example 3 - Print a statement 3 times

after that print different statement.

Condition: Till the time the test
expression remains true we will run the
body of while loop printing statement 1
and after the condition is false, we will
print statement 2.

And the decision we are deriving is:

Decision: Have we printed the

statement 1 three times, if yes then print

the statement 2

Based on this we can write the below

pseudocode:

This is the result for the code

y = 0

while y < 15
 y+=1
 print(y)

y = 0
while y < 3
 y+=1
print(“I will eat healthy food every day.”)

I will eat healthy food every day.
I will eat healthy food every day.
I will eat healthy food every day.

y = 0
while y < 3
 y+=1
print(“Please,”)
else
print(“I want to play.”)

57 | P a g e

Example 4 - Print number from 10 to 1

Condition: Till the time the test
expression remains true we will run the
body of while loop printing statement
and after the condition is false the loop
will stop

And the decision we are deriving is:

Decision: Have we printed 1

Based on this we can write the below

pseudocode:

This is the result for the code

The For Loop

For loop is needed for iterating over a

sequence. A for loop executes for a

specific number of times.

Now let us see a few examples:

Example 1 – We need to print a

statement five times using the for loop

The pseudo code for this will look like

below:

range(5) used in the above snippet

returns a sequence of numbers from 0 to

5. This is the result for the code

Example 2 – Use for loop to print all the

odd numbers from a list.

The pseudo code for this will look like

below:

This is the result for the code

Example 3 – Use for loop to print all the

even numbers from a list.

The pseudo code for this will look like

below:

Please,
Please,
Please,
I want to play.

x = 10
while x==1
print(x)
x-=1

10
9
8

7
6
5
4
3
2
1

for i in range(5)
 print(“I will study every day.”)
 i++

I will study every day.
I will study every day.
I will study every day.

I will study every day.
I will study every day.

list1 = [13, 24, 7, 49, 74, 29]

 for x in list1:
 if x % 2!= 0:
 print(x, end = " ")

 13 7 49 29

58 | P a g e

This is the result for the code

The Nested Loop

Any loop in program may contain

another loop inside it. When there is a

loop inside another loop, it is called a

nested loop. How it works is that first

success condition of outer loop triggers

the inner loop which runs and reaches

completion. This combination of loops

inside loop is helpful while working with

requirements where user wants to work

of multiple conditions simultaneously.

There is no restriction on how many

loops can be nested inside a loop.

To understand the concept of Nested

loops better, consider an example of an

Analogue clock. An analogue clock has

one hand as the nested loop and every

full rotation knocks the minute hand on

by one etc. We can take this even further

to say that clocks are just a form of the

counting system. This is how nested

loops work in real life.

Below is an example of nested loop.

Now that we know the concept of loops

let us try this out with block coding. We

will build a very simple music player

using the concepts of loops.

5.5 Activity: Building a music

player

We will implement the concept of

incrementing loops with the help of

Arcade platform. Let us go through the

below exercise step by step.

list2 = [13, 24, 7, 49, 74, 29]
 for x in list2:
 if x % 2 == 0:
 print(x, end = " ")

 24 74

59 | P a g e

60 | P a g e

61 | P a g e

When you click on the play for the above

exercise that we created, you will hear

the music 10 times. The loop repeats

itself 10 times (counter that we had set).

The flow starts with 1 and in each

iteration, it increments once. Each time

loop completes once iteration, and you

will hear music once.

5.6 Entry Criteria

Now that we have understood about

different loops and its iterations, it is

also important to understand when and

where should one start iterating through

these loops. When the looping condition

is true then the code will enter a loop. it

is important to define an entry criterion

for the loop to ensure that the loop runs.

Entry criteria is defined as a condition

that must be met before starting a

specific task. It is a set of conditions that

must exist before you can start a task.

These criteria differ from program to

program as per the requirement.

For example, To start a car you need

petrol/diesel. If your fuel tank is empty

your car won’t start. So, the entry

criteria for the car to start is fuel tank

should not be empty.

5.7 Exit Criteria

Now that we have understood about

loops and its iterations, it is also

important to understand when and

where should one stop iterating through

these loops. As mentioned in the

previous topic, it is crucial to keep in

mind that the looping condition should

result false at a certain point of time

while programming. Otherwise, the

block of code will enter an infinite loop.

To ensure that the loop does not enter

62 | P a g e

an infinite loop, it is important to define

an exit criterion for the loop.

Exit criteria is defined as a condition

that must be met before completing a

specific task. It is a set of conditions that

must exist before you can declare a

program to be complete. Exit criteria is

one of the most important components

while defining a loop. As without an exit

criterion, the program tends to enter in

an infinite loop. These criteria differ from

program to program as per the

requirement.

For example, while creating a loop to

print numbers from 1 to 1000, exit

criteria is that loop should exit the block

of code when the 1000th number is

printed, else the program will enter an

infinite loop.

5.8 Break Statement

The break statement modifies the

normal flow of execution while it

terminates the existing loop and

continues execution of the statement

following that loop. Break statement is

required as sometimes you want to

break out of a loop early when a

condition is met.

Let us now understand Break Statement

with help of below pseudocode:

As we see the control skips the lines

after the break statement and executes

the first statement outside the loop.

Example – Use break statement to

print number from 9 to 5 and another

print statement when you encounter

break

The pseudo code for this will look like

below:

This is the result for the code

a = 9
while a > 0:
 print 'Current variable is:', a

 a = a -1
 if a == 5:
 break

print "Bye!"

Current variable is: 9
Current variable is: 8
Current variable is: 7
Current variable is: 6

Bye!

63 | P a g e

5.9 Continue Statement

Whenever a program comes across a

continue statement, the control skips

the execution of remaining statements

inside the loop for the current iteration

and jumps to the beginning of the loop

for the next iteration. If the loop's

condition is still true, it enters the loop

again, else the control will be moved to

the statement immediately after the

loop. This is somewhat similar to break

statement and is used when we want to

force the next iteration and skip some

lines of code within the loop.

Let us now understand continue

statements with the below pseudocode:

As you can see, as soon as the continue

statement is encountered, the lines

below the continue statement are

skipped. But unlike the break

statement, the loop is not terminated.

Instead, the control jumps to the

beginning of the loop.

Example – Use continue statement to

print number from 9 to 0 and does not

print when the value is 5

The pseudo code for this will look like

below:

This is the result for the code

Now that we know the concepts of loops

let us do an activity.

5.10 Activity: A tale of two

villages

In this exercise, we will use basic coding

concepts to bring two villages together in

Minecraft: Education Edition. You

setup Minecraft education edition from

https://education.minecraft.net/get-

started

b = 9

while b > 0:

 b = b -1

 if b == 5:

 continue

 print 'Current variable is:', a print

"Bye!"

Current variable is: 9
Current variable is: 8
Current variable is: 7
Current variable is: 6
Current variable is: 4

Current variable is: 3
Current variable is: 2
Current variable is: 1
Current variable is: 0
Bye!

64 | P a g e

65 | P a g e

66 | P a g e

67 | P a g e

There are many other challenges that can be done. Let us do one more to help villagers

learn how to farm.

68 | P a g e

5.11 Quiz time

Objective Type Questions

Question 1 The if statement is used to execute some code if a statement is true.

Option 1 True

Option 2 False

Question 2 An else statement should always be after an if statement which
executes when the code is false.

Option 1 True
Option 2 False

Refer https://education.minecraft.net/hour-of-code-2020 for the entire activity.

https://education.minecraft.net/hour-of-code-2020

69 | P a g e

Question 3 A while loop statement repeatedly executes a statement as long as

the condition remains true
Option 1 True

Option 2 False

Question 4 Without a statement that eventually evaluates the while loop
condition to false, the loop will continue indefinitely

Option 1 True

Option 2 False

Question 5 A for loop executes for a specific number of times

Option 1 True

Option 2 False

Question 6 A continue statement is used to skip all the remaining statements in
the loop and moves the control back to the top of the loop.

Option 1 True

Option 2 False

Question 7 When a break statement is encountered inside a loop, the loop is
immediately terminated, and the program execution moves on to the
next statement in the loop.

Option 1 True

Option 2 False

Question 8 Doing something over and over again or repeating code is called as

Option 1 Code

Option 2 loop

Option 3 Program

Option 4 Bug

Question 9 Which is the correct operator for equality testing?

Option 1 ==

Option 2 =

Option 3 !=

70 | P a g e

Option 4 +=

Question 10 What is the output of the below pseudocode?

Option 1 5

Option 2 10
Option 3 15

Option 4 0

Question 11 Which letter won’t print while running the below pseudocode?

Option 1 ‘d’
Option 2 ‘c’

Option 3 ‘n’

Option 4 ‘o’

for letter in "coding":

 if letter == "i":

 break

 print(letter)

print("End")

count = 0;

sum = 0;

while (count < 5)

{

 sum = sum + count;

 count = count + 1;

}

print sum;

71 | P a g e

Question 12 Which letter won’t print while running the below pseudocode?

Option 1 ‘g’
Option 2 ‘o’

Option 3 ‘d’

Option 4 ‘i’

Short Answer Questions

1. Define loops and nested loops in programming

2. What is an exit criterion?

3. How do we increment loops?

4. What is a break statement?

5. What is a continue statement?

Higher Order Thinking Skills (HOTS)

Now that you know the concept of Nested Loops. Using Arcade MakeCode platform

create an example for nested loops.

Applied Project

Write a program using loops that ask the user to enter an even number. If the number

entered does not display an appropriate message and asks them to enter a number

again. Do not stop until an even number is entered. Print a congratulatory message at

end.

for letter in "coding":

 if letter == "i":

 continue

 print(letter)

print("End")

72 | P a g e

5.12 What did you learn in this chapter?

• You should now have an idea of what are loops and how they are used in
programming?

• Incrementing loops
• Different types of loops
• What is entry and exit criteria in loops and its usage?
• Break and continue statements

• Concept of nested loops

73 | P a g e

REFERENCES

Microsoft. 2021. Microsoft MakeCode Arcade. [Online]. [25 February 2021].

Available from: https://arcade.makecode.com

Microsoft. 2021. Microsoft MakeCode for Minecraft. [Online]. [25 February 2021].

Available from: https://minecraft.makecode.com

Microsoft. 2021. Computer Science Subject Kit | Minecraft: Education Edition.

[Online]. [25 February 2021]. Available from:

https://education.minecraft.net/class-resources/computer-science-subject-kit

Microsoft. 2020. Activity: We Built a Zoo. [Online]. [25 February 2021]. Available

from: https://education.minecraft.net/class-resources/computer-science-subject-

kit

ACM, Inc. 2021. Code of Ethics. [Online]. [25 February 2021]. Available from:

https://www.acm.org/code-of-ethics

Microsoft. 2020. Hour Of Code 2020 | Minecraft: Education Edition. [Online]. [25

February 2021]. Available from: https://education.minecraft.net/hour-of-code-

2020

https://arcade.makecode.com/
https://education.minecraft.net/class-resources/computer-science-subject-kit
https://education.minecraft.net/class-resources/computer-science-subject-kit

